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Essential Variables

(Gettelman et al., 2022) 

(Irrgang et al., 2021)

Neural Earth system modelling

Model-data fusion
 Significant precision inconsistencies exist among these 

models due to their own limitations, even for the same 
process or variable on an identical scale

 The corresponding simulations or predictions are often 
different or even contradictory, particularly with the 
influence of anthropogenic activities in Earth systems

(Lausch et al., 2018)

Increasing need for better theories, methods, and data sets

(Steffen et al., 2020; Abbott et al., 2019; Tortell, 2020)

Background
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Complex environmental gradientsBackground

(Chen et al., 2023. In review) 
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No model exists with consistently low noise levels over time and space Background

5
(Chen et al., 2023. In review) 



 Numerous ensemble methods have been proposed for various sub-fields of geosciences, for example,

• Hydrometeorological variables: Soil moisture; Evapotranspiration; Streamflow (or runoff), ……

• Physics-based CMIP5/6 models

• Ensemble learning in data-driven science: bagging, boosting, stacking, ……

• from simple methods such as arithmetic MEAN to more complicated ones such as weighted mean using the BMA, EOF,……

Efforts have been devoted to assembling multiple geoscientific models

 However, assigning fixed weights under all conditions to 
individual models that depend on just a subset of 
environmental constraints may not fully utilize the strength 
of ensemble approaches and/or individual models

Background

 The superiority of using ensemble strategies over any of the single models

(Opitz and Maclin, 1999; Fragoso et al., 2018; Zounemat-Kermani et al., 2021; Lu et al., 2022; Bai et al., 2021; Telteu et al., 2021; Zaherpour et al., 2019)
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 With increasing data availability for earth systems, machine 

learning (ML) techniques provide additional avenues for 

addressing this issue



 However, the use of ML models is still faced with several challenges, such as feature engineering, model/optimization algorithm 

selection, and neural architecture design, making it time-consuming and error-prone if constructed manually  (Tuggener et al., 2019)

Background Automated machine learning (AutoML): An emerging area in ML 
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Automated machine learning-assisted ensemble framework (AutoML-Ens)Methods

 key strategy of mapping between the probabilities derived from the machine learning classifier and the dynamic 

weights assigned to the candidate ensemble members

(Chen et al., 2023. GMD) 
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Mapping global soil water retention parametersCase 1

(Vereecken et al., 2022)

The pedotransfer functions (PTF) concept
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Mapping global soil water retention parametersCase 1

National Cooperative Soil Survey

 up to 13 selected PTFs according to Zhang et al., 2018, 2020

 predictors (volumetric fractions [%] of sand, silt, and clay, BD 

[g/cm3], OC [%], and matric potential [bar])

 49,855 soil samples and a total of 

118,599 water retention records

 measured at matric potentials of -

0.06, -0.1, -0.33, -1, -2, or -15 bar

(Zhang et al., 2020; Chen et al., 2023. GMD) 

Model setting
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Mapping global soil water retention parametersCase 1

 Compared to conventional ensemble 
approaches, AutoML-Ens was superior 
across the datasets (the training, testing, 
and overall datasets) and environmental 
gradients with improved performance 
metrics

 With the largest positive R2 difference 
value of 0.075 (improved by 9% from 
0.797 to 0.872) and the lowest negative 
RMSE difference value of -0.012 m3/m3 
(reduced by 22% from 0.055 to 0.043 
m3/m3) compared to the MEAN 
ensemble (considered as the benchmark)

(Chen et al., 2023. GMD) 
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Mapping global soil water retention parametersCase 1
 A set of global soil water retention 

parameters (with a resolution of 10 
km) was produced at different soil 
depths (that is, 0-5 cm, 5-15 cm, 15-30 
cm, 30-60 cm, 60-100 cm, and 100-
200 cm) using the SoilGrids soil 
composition database (Hengl et al., 
2014, 2017) as input for the newly 
proposed AutoML-Ens

https://doi.org/10.6084/m9.figshare.17098487.v1

(Chen et al., 2023. GMD) 

https://doi.org/10.6084/m9.figshare.17098487.v1


Necessity of assigning optimal dynamic weights in ensemble approachesCase 1

13
(Chen et al., 2023. GMD) 



Case 1 If the classification accuracy matters?

 Poor accuracy may result from the uneven distribution of available data samples, their low representative ability, and inter-
model similarities and dependencies (Holtanová et al., 2019). 

 If taking the mean per class error, which indicates misclassification of the data across the classes, as an indicator, it can be about 
77% in this example

14
(Chen et al., 2023. GMD) 



Case 2 Improving remotely sensed cropland ET estimates

 a total of 83,621 record (daily scale)

(Bai et al., 2021; Chen et al., 2023. GMD) 

FLUXNET measurements in combination with remotely sensed surface parameters

Six physically-driven remote sensing-based ET models.
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Case 2 The advantage of an AutoML-based workflow

16
(Chen et al., 2023. GMD) 

Rank Model* Mean per class error R2 RMSE (W/m2)

1 Stacked_Ensemble_All_Models 0.5890107 0.8502772 16.37276

2 Stacked_Ensemble_Best_Of_Family 0.5901575 0.8433838 16.74402

3 XRT_1 0.5990940 0.8238412 17.80632

4 DRF_1 0.6000693 0.8254552 17.72398

5 GBM_grid_1_model_1 0.6152126 0.8594122 15.88430

6 GBM_4 0.6156997 0.8050057 18.74331

7 XGBoost_grid_1_model_4 0.6175429 0.7896317 19.48109

8 XGBoost_grid_1_model_7 0.6182065 0.7919117 19.37204

9 GBM_5 0.6196878 0.7930434 19.32466

10 XGBoost_grid_1_model_9 0.6214154 0.7940143 19.26547

11 XGBoost_grid_1_model_8 0.6220251 0.8742440 15.02540

12 XGBoost_grid_1_model_1 0.6235140 0.7981535 19.07374

13 XGBoost_grid_1_model_3 0.6243140 0.7928134 19.33150

14 GBM_3 0.6248937 0.7836964 19.76815

15 XGBoost_grid_1_model_5 0.6252402 0.8135903 18.31214

16 XGBoost_grid_1_model_6 0.6272789 0.7797398 19.94857

17 GBM_grid_1_model_5 0.6288796 0.7789381 20.00014

18 XGBoost_2 0.6301792 0.8286823 17.52763

19 XGBoost_1 0.6313061 0.7974012 19.11246

20 GBM _2 0.6322671 0.7731042 20.27247

21 GBM_grid_1_model_3 0.6356704 0.7716974 20.34037

22 GBM_1 0.6371586 0.7708355 20.38789

23 XGBoost_grid_1_model_2 0.6444023 0.7593128 20.89775

24 GBM_grid_1_model_4 0.6470411 0.7791697 20.04830

25 XGBoost_3 0.6479244 0.7657713 20.60219

26 GBM_grid_1_model_2 0.6526127 0.8525492 16.26434

27 DeepLearning_grid_1_model_2 0.6851248 0.7089920 23.09232

28 DeepLearning_grid_1_model_1 0.6976690 0.7178891 22.38846

29 DeepLearning _1 0.7208075 0.7084561 23.11835

30 DeepLearning grid 3 model 1 0 7247005 0 6777100 24 45820



Case 2 Pure AutoML-based ensembles may appear largely inconsistent with known physics

Energy fluxes

𝑅𝑅𝑅𝑅 = 𝐻𝐻 + 𝐿𝐿𝐿𝐿 + 𝐺𝐺

𝑅𝑅𝑅𝑅
𝐻𝐻 𝐿𝐿𝐿𝐿

𝐺𝐺

A possible extension: Incorporating physical knowledge into machine learning 17
(Chen et al., 2023. GMD) 



For specific ensemble tasks, several challenging issues still exist, 
for example,

 Over- and/or under-estimation, e.g., smoothed ensemble 
 Sample representation, e.g., extreme values
 Similarities among ensemble members, e.g., sharing the same data 

source, parameters, and assumptions

Slow down and think creatively,…...
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Case 3 Framework extension: Joint machine-learning based classification and regression

(Chen et al., 2023. In Review)
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Case 3 Regression-based ensembles vs Classification-based ensembles 

20
(Chen et al., 2023. In Review)



Case 3 Still perform better over ungauged regions

21
(Chen et al., 2023. In Review)



Case 3 Cracking the Box: Interpreting black box machine learning models

22
(Chen et al., 2023. In Review)



Summary and outlook

 AutoML-Ens’ three unique features:

 assigning dynamic weights for candidate models 

 taking full advantage of AutoML-assisted workflow

 flexible, extendable, modular and computationally efficient

 Similarities within a multi-model ensemble are responsible for poor classification accuracy but allowed

 Suggestion: combining data-driven approaches with physics constraints

 Next big step: explainable AI--From black box to transparency
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 Chen et al. (2023). Geoscientific Model Development. Dynamically weighted ensemble of geoscientific models via 
automated machine learning-based classification. (In Press)

 Chen et al. (2023). Atmospheric Research. Toward an improved ensemble of multi-source daily precipitation via joint 
machine learning classification and regression. (In Review)

 Or by email - hao_chen@tju.edu.cn; ha.chen@fz-juelich.de

For details

mailto:hao_chen@tju.edu.cn
mailto:ha.chen@fz-juelich.de
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How much rain will fall in Jülich tomorrow?

Seecasino, Forschungszentrum JülichGuten Appetit!
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Models and ensembles

Harry

Systems

Carsten

Remote sensing
Mehdi

Soil memory

Thomas

Weather radar

Probability Amounts

87% 10 mm

66% 15 mm

100% 5 mm

10% 2 mm

Mean

65.75% 8 mm

Real

100% 9 mm

Time1980 2023
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VS

 Numerous ensemble methods have been proposed
e,g., Ensemble learning in data-driven science: bagging (Breiman 1996), boosting (Freund and Schapire 2005), stacking (Wolpert 1992)
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A data-driven ensemble framework ------ A machine learning classifier

(Source: Matlab)

 Key strategy of mapping between the probabilities derived from the machine learning classifier and the dynamic weights 
assigned to the candidate ensemble members
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Dynamic weights

1 2

3

4
5

 Weights assigned to candidate ensemble members vary depending on the spatial and temporal changes in environmental conditions and 
the performance capabilities of individual models under these conditions

Chen et al. (2023). Geoscientific model development (In Press). 
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Implementation

Time1980 2023
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……

……3 1 4 2 1
Labeled optimal prediction with LAE A simple-scale ensemble, done! 

Time1980 2023
Ra

in
fa

ll

……

2007-2016 – Wet Day (2) - 688,035 cases

LAE: Least absolute error

But,
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Framework extension: Joint machine-learning based classification and regression

Chen et al. (2023). Atmospheric Research (In Review). 
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If the classification accuracy matters?

HarrySystems Carsten

Remote sensing

Mehdi

Soil memory

Environmental conditions -> models

Thomas
Weather radar

Similarities within a multi-model ensemble are responsible for poor classification accuracy but allowed



 However, the use of ML models is still faced with several challenges, such as feature engineering, model/optimization algorithm 

selection, and neural architecture design, making it time-consuming and error-prone if constructed manually  (Tuggener et al., 2019)

Automated machine learning: An emerging area in ML 
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Thanks
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