

CT Hydrosphere

S. Zacharias, K. Rinke

Heye Bogena, Jan Vanderborght, Sander Huisman – FZJ Luis Samaniego, Michael Rode, Ute Wollschläger, Christian Schmidt, Andreas Musolff – UFZ Theresa Blume – GFZ, Gunnar Lischeid – ZALF Harald Kunstmann – KIT, Eckart Priesack – HMGU

UFZ Helmholtz Centre for Environmental Research

Main Hypotheses for Hydrological Research in TERENO

- Patterns and structures in terrestrial systems play an critical role in determining the hydrological fluxes
- The vadose zone is the key compartment and soil moisture a key variable
- Climatic changes will lead to higher runoff in winter, shorter retention times, and will critically alter groundwater and surface water hydrology
- Climatically driven extremes (like extended drought events) affect the aquatic ecosystems as well as freshwater supply
- Landuse changes (e.g. toward a growing bioenergy sector) will affect water quality
- Effects of changing climate and landuse are regionally differentiated.
- Novel monitoring technologies of non-invasive, multiscale observation and data assimilation techniques will improve the quantification of hydrological fluxes.

Page 2

Zacharias & Rinke: CT Hydrosphe

