

HGF Alliance: Remote Sensing and Earth System Dynamics

Presented by Irena Hajnsek - DLR-HR/ETH

The Team

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Friedrich-Schiller-Universität Jena

Principal Investigator

Scientific Coordinators

Helmholtz Center for Environmental Research (UFZ),
Forschungszentrum Jülich (FZJ), German Research Center
for Geoscience (GFZ), Alfred Wegener Institute for Polar
and Marine Research (AWI), Karlsruhe Institute of
Technology (KIT), Helmholtz Center for Ocean Research
(GEOMAR), German Research Center for Environmental
Health (HGMU), Potsdam Institute for Climate Impact
Research (PIK), Federal Institute for Geosciences and
Natural Resources (BGR), Forest Stewardship Council (FSC),
Philipps-University Marburg (PUM), Technical University
Munich (TUM), Friedrich Schiller University Jena (FSU),
Friedrich-Alexander University Erlangen-Nuremberg (FAU),
University Hamburg (UHH), Ludwig Maximillian University
Munich (LMU), University Potsdam (UP), Swiss Federal
Institute of Technology Zurich (ETHZ)

German Aerospace Center (DLR)
Microwaves and Radar Institute

German Aerospace Center (**DLR**)
Helmholtz Center for Environmental Research (**UFZ**)

Universität

Marburg

Philipps

GEOMAR

EUROPEAN COMMISSION

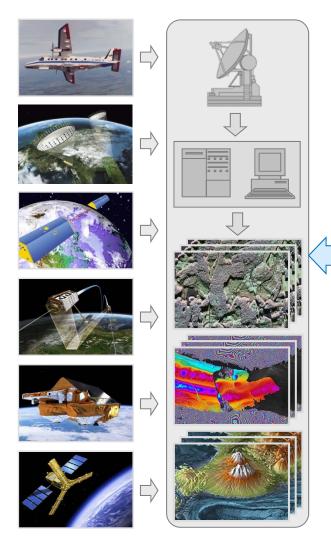
NATURAL ENVIRONMENT RESEARCH COUNCIL

WAGENINGEN UR

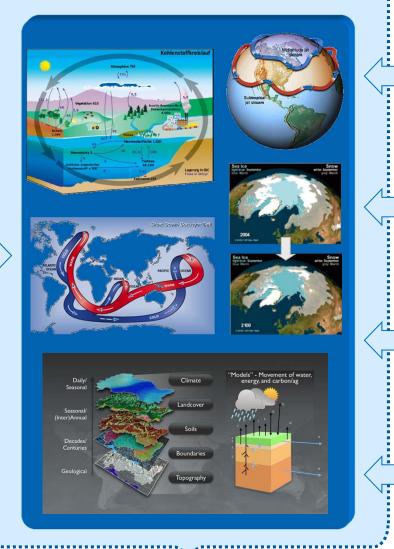
Aalto University

School of Science and Technology

AĘĻ


British

Antarctic Survey

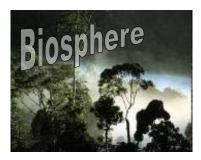


Next Generation of Remote Sensing Satellites

Satellites Ground Segment

Remote Sensing Products and Earth System Dynamics

Societal Challenges

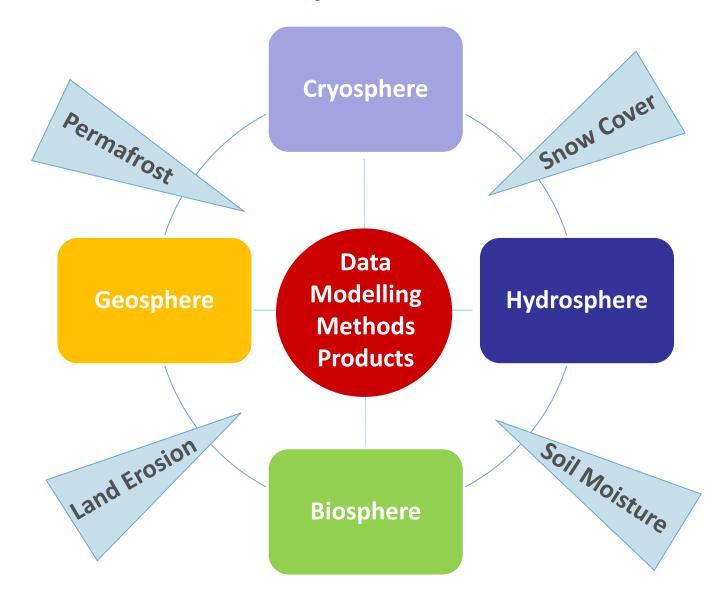


Remote Sensing and Earth System Dynamics

Remote Sensing and Earth System Dynamics (EDA)

The **key objective of the Helmholtz Alliance** is to prepare the participating institutions for the generation, utilization and integration of bio/geo-physical products provided by the next generation radar remote sensing missions by:

- developing/validating bio/geo-physical information products
- integrating the physical products into models
- improving the understanding/modeling of dynamic processes
- establishing a network between Helmholtz centers/Universities
- providing a unique forum for education



Examples of Research Topics Interactions

Alliance Structure

Working Packages (WPs):

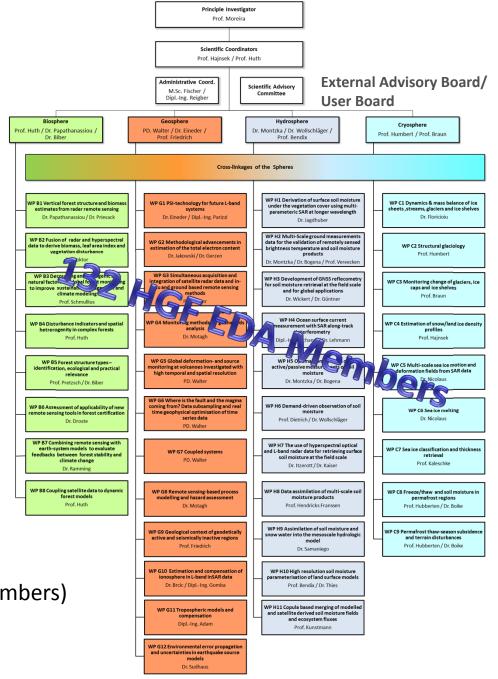
• Biosphere: 08 WPs

• Geosphere: 12 WPs

Hydrosphere: 11 WPs

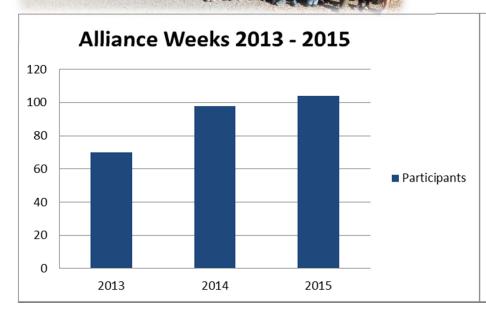
Cryosphere: 09 WPs

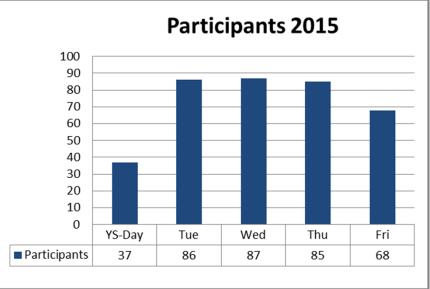
3 Levels of Networking


- within a work package
- within a research topic
- between research topics

Knowledge Exchange

- scientific workshops (2x yearly)
- Alliance Week (1x yearly)


Progress Reviewed


- steering committee meetings (16 members) (every 3-4 months)
- advisory committee meeting (yearly)

Participants HGF Alliance Week: 2013 - 2015

User Survey

Objectives

- Presentation of the EDA product catalogue to potential users
- EDA scientists receive responses about specific user requirements

Invited User Community

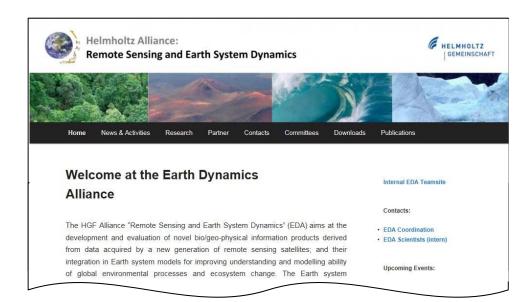
 Public authorities, insurers, environmental organizations, research institutions etc.

Launch of the questionnaire

Late 2015

PRODUCTS	SCALE	SPATIAL RESOLUTION	ACCURACY		TEMPORAL RESOLUTION seasonal					
Grounding Line Position	Antarctic and ice tongues in Greenland	30 m x 30 m								
Ice Sheet Elevation Change	PRODUCTS	SCALE	SPATIAL RESOLUTION	ACCUR			MPORAL DLUTION			
Ice Sheet and Ice Cap Extend	Upper Canopy Height	Global	50 m x 50 m	1000	2000		nonths			
Ice sheet and Glacier Retreat / Extension Rates		PRODUCTS			SPATIAL RESOLUTION				TEMPORAL RESOLUTION	
		Large Scale Deformation	Global	10	100 m x 100 m		1 mm (after 5 years)		twice a year	
Surface Melt Extend	Upper Canopy Height Change	Earthquake	PRODUCTS		SCALE		SPATIAL RESOLUTION		ACCURACY	TEMPORAL RESOLUTION
			Soil Moisture		Local		50 m x 50 m		5-10 %	up to 4 x per wee
Glacier Velocity		Volcanoes	Soil Moisture	Local	Local		50 m x 50 m		10 % (of the change)	up to 4 x per wee
Calving Rates		Landslides	Change							
Ice Berg Transport	Forest Structure Change	Urban Subsidence	Water level change	Region	Regional		50 m x 5	0 m	10 cm	on demand
		Regional	Ocean Currents	Region	Regional		100 x 100 m		0.1 m/s	weekly
Sea Ice Extend and Concentration		Global	Coastal line mappi	ng Global			10 m x 1	0 m		yearly
Sea Ice Type	Above-Ground Biomass	Regional	Wind speed velocit	dy Global region	coastal s		100 n	1	1.5 m/s	every opportunit
Sea Ice Melt Pond Concentration	Above-Ground	Global	100 m × 100 m	5 t/ha to 30 chang		У	early			
Sea Ice Drift	Biomass Change	Regional	50 m x 50 m	5 t/ha to 30 chang		on	request			
Permafrost Extend	All Permafrost	10 m x 10 m	10%		seasonal					
Surface Deformation	regions All Permafrost regions	100 m x 100 m	1 mm (after 5 year	rs)	twice a year					
Active Layer Extend	All Permafrost regions	50 m x 50 m	10 % of the chang	ge C	Onse per season					

Homepage


http://hgf-eda.de/

Active Components:

- Announcements
- Research Highlight
- Upcoming Events
- Publications

New Components

- EDA Scientists in Action
- Upcoming: Data Publication

News & Activities

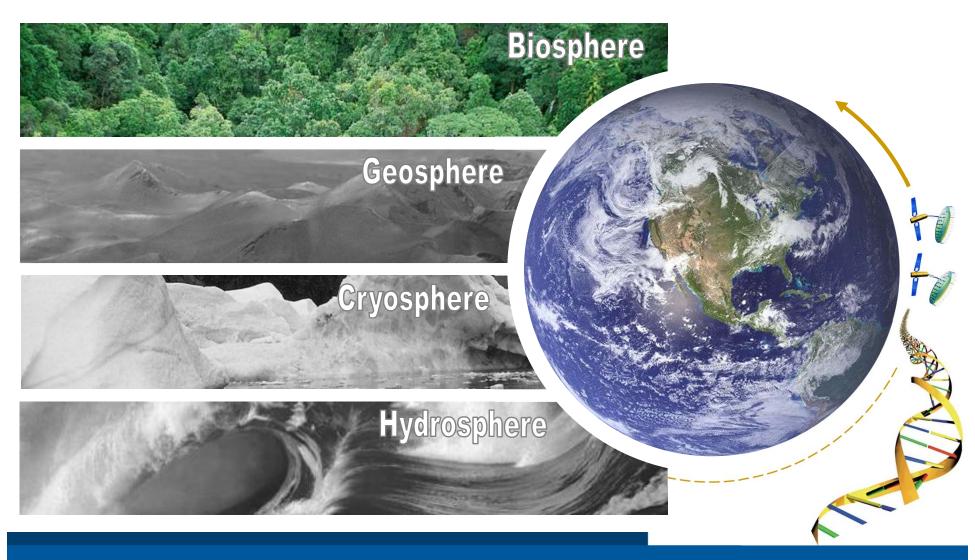
EDA Scientists in Action:

3rd Alliance Week: For the third time, all scientists of the Earth Dynamics Alliance will

meet in the frame of an Alliance Week, which takes place in Garmisch-Partenkirchen from June 22nd until June 26th. In the presence of the External Advisory Board, the

- ARCTIC15 Field Campaign
- ARCTIC15 Field Campaign Blog

Internal EDA Teamsite

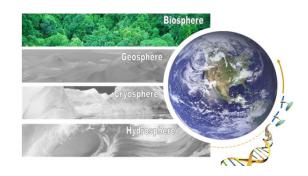

Contacts:

- EDA Coordination
- · EDA Scientists (intern)

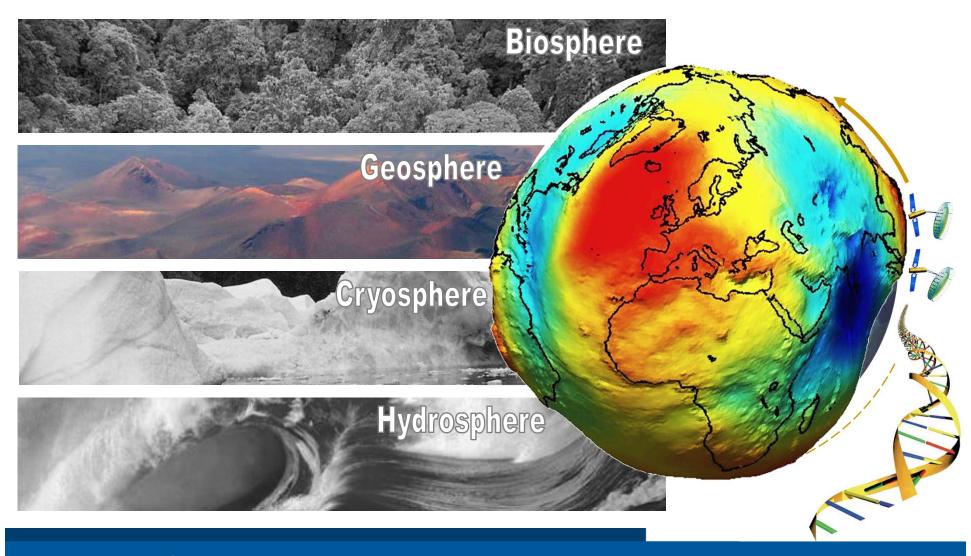
Upcoming Events:

Conferences

- HydroEco2015
 13-16.04.2015
- EGU General Assembly 12-17.04.2015
- International Symposium on Remote Sensing of Environment 11-15.05.2015

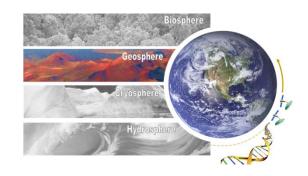


Biosphere

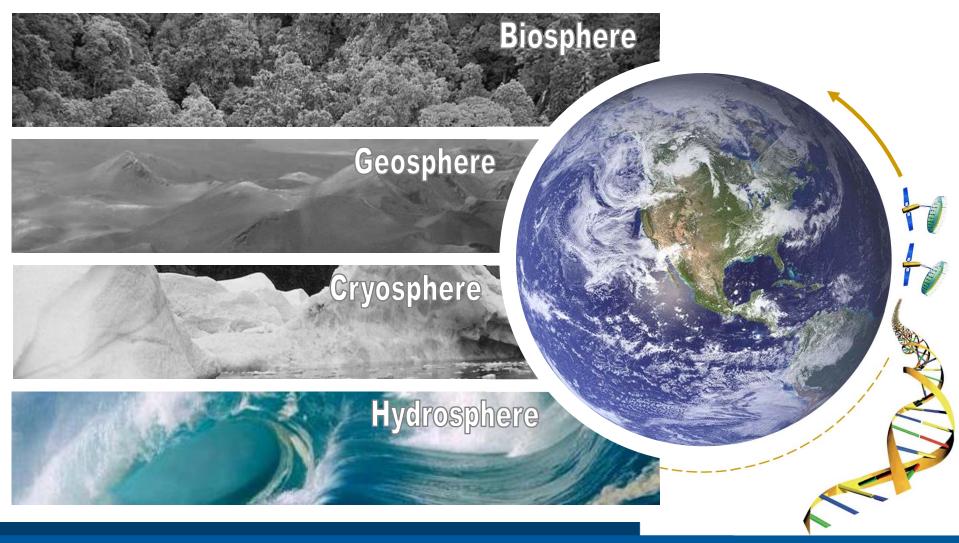

The HGF-EDA Biosphere Team

Overarching Scientific Questions Biosphere

- 1. Which is the total amount of above-ground forest biomass and how is its spatial distribution on a global scale?
- 2. How is forest structure and above-ground forest biomass changing over time?
- 3. Where are changes occurring? Where are anthropogenic changes occurring and to which extent?
- 4. How is climate change affecting forest stability? How are regional climate conditions and anthropogenic factors changing forest structure and forest biomass?

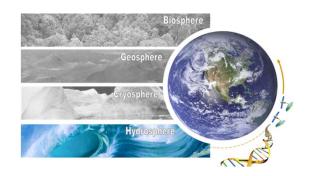


Geosphere

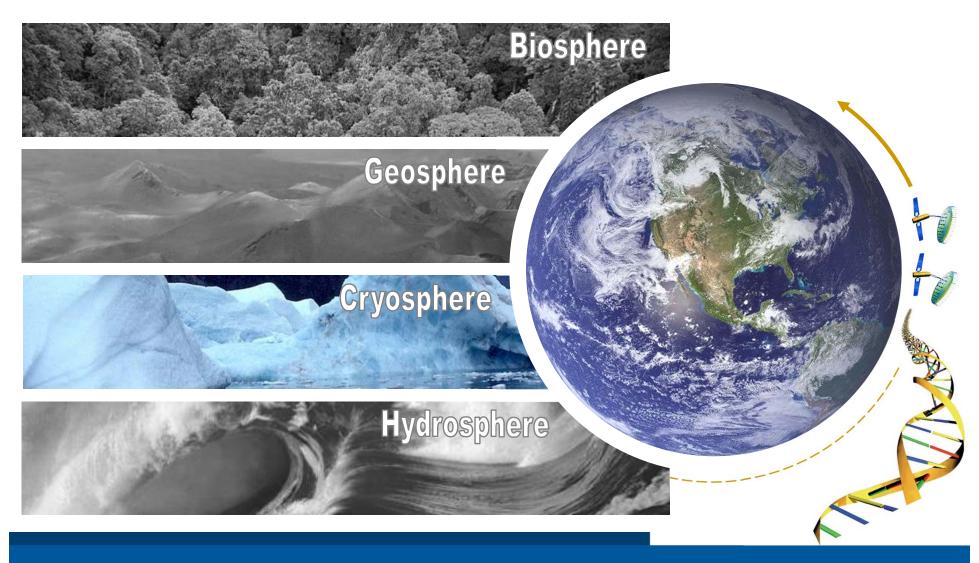

The HGF-EDA Geosphere Team

Overarching Scientific Questions Geosphere

- 1. Is it possible to measure the strain accumulation in plate boundaries (scales >> 1000km²) and by this to improve the forecast model of a specific earthquake?
- 2. Which are the location and extension of the rupture zones caused by an earthquake? How much energy is accumulated before, and released during an earthquake and during the postseismic relaxation?
- 3. Can the hazards of volcanic regions be estimated by means of the surface deformation measurement? How are volcanoes coupled to their surrounding?
- 4. Which influence have processes in the hydrosphere and cryosphere as well as the use of underground water reservoirs on georisks like landslide and surface deformation?

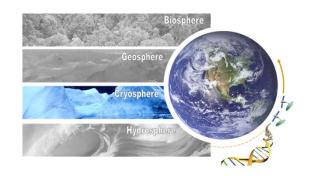


Hydrosphere


The HGF-EDA Hydrosphere Team

Overarching Scientific Questions Hydrosphere

- 1. Which is the influence of soil moisture patterns on groundwater, runoff and soil water storage in meso-scale catchments?
- 2. How strong is the temporal and spatial variation in soil moisture coupled with regional climate (and weather) changes?
- 3. Which role does the spatial and temporal dynamics in soil moisture play in evaporation- and transpiration processes? How does it influence energy transport between soil and atmosphere?
- 4. How can near-realtime spaceborne observations help improve water cycle predictions for resource-efficient automated agricultural management (irrigation, fertilization, etc.)?



Cryosphere

The HGF-EDA Cryosphere Team

Overarching Scientific Questions Cryosphere

- 1. How are glaciers and ice caps changing with respect to climate change? What are the mechanisms that induce these changes and how can they be better observed and monitored?
- 2. Which processes drive the current mass loss of the large ice sheets? How can we reduce the uncertainties in our current quantifications of ice mass changes?
- 3. How are regional and global environmental climate factors changing the snow cover extent and how can we better quantify the snow water equivalent?
- 4. How can measurements with high spatial and time resolution improve sea ice classification as well as the modelling of sea ice rheology?
- 5. Where and how are permafrost areas changing over space and time? What is the contribution of permafrost to greenhouse gas emission?

EDA in Numbers

132 EDA Members

6 Tutorials within the Alliance

25 Third-Party Revenues

3 Alliance Weeks

42 Peer-Reviewed Publications

19 Invited international Experts

44 EDA PhD Students

12 Awards

17 Campaigns

24 EDA PostDocs

26 Young Scientist Exchanges

8 Research Topics
Workshops

10 Summer schools