

Institute for Integrated Management of Material Fluxes and of Resources

Data collection and visualization of water services: Applications for nexus governance in Africa

Theresa Mannschatz
Stephan Hülsmann
Systems and Flux Analysis UNU-FLORES

TERENO Conference, Bonn, 29.09-02.10.2014

flores.unu.edu

The environmental resources' perspective on W-E-F Nexus

Resources perspective:

- Water
 - ➤ Also for food and energy
- Soil
 - Food and biomass production
- Waste
 - Source of organic material and nutrients
 - > Energy production

Energy implicitly included

Source: UN Water 2013

General Approach From Research Question to Visualization

Introduction - Data Availability

Data-Rich vs. Data-Scarce Regions

Global distribution of climate stations (DOC/NOAA/NESDIS/NCDC, http://www.climate.gov/)

Data Assessment Methods Data scarce Regions

Proxies

- simplification of reality (e.g. water quality vs. water colour)
- substitute real data by an estimation value (easier to collect, e.g. vegetation <u>index</u> vs. biomass production)
- overcome data scarcity
- Substitute time-and-cost-consuming data surveys
- Associated with uncertainty

 needs to be communicated

(Quasi-)Continuous Data Assessment Methods

Near-surface Geophysics

 e.g. underground structures, layering, homogeneity, proxy for hydrological properties

Remote Sensing

- Multispectral (e.g. land cover, indices, flooded area, impervious surface)
- Hyperspectral (e.g. chemistry, biophysical parameters, plant health)
- Radar (e.g. rainfall, topography, surface structures)
- Thermal (e.g. wetted area, surface temperature)

Geoelectric profile measurement (Preliminary data by Mannschatz 2014)

Lake 'chad' mapping of water body extension (1987-2001) (Leblanc et al. 2011)

... Data Assessment Methods

- Ground-truthing needed (validation, calibration)
- Integration of different remote sensing products → 'secondary hydrological products'
 - modelling approach (e.g. SWI, ET with RS as input)

Soil water index – Proxy for root zone water (Melesse et al. 2007)

Making Use of Data Time-Series Visualization

Near-real time (16 days) Droughts 09th May 2013 – 09th May 2014 (http://gis.csiss.gmu.edu/)

Groundwater flow model – Saudi Arabia OpenGeoSys (Schulz et al 2014)

Making Use of Data Nexus Observatory

'Problem of Big Data' vs. Data Scarcity Infrastructure to join data

 <u>Linked databases</u>: Point, non-point, continuous data; shared access to data visualization techniques, modelling and scenario analysis tools.

Data Integration

- Data proxies
- Nexus index
- What role for *private data sets (crowd sources)*?

Data Visualization

- Spatial and non-spatial data visualization
- Scenario development based on data from regional research consortiums
- What role in shaping reform triggers & capacity development strategies?

Making Use of Data Application examples

- Risk assessment and Warning Systems
 - Drought risk, flooding, water quality
- Precision Water Management
 - Irrigation management
 - Water withdrawal management
- Monitoring
 - Climate Change impact on water availability
 - Research e.g. Soil moisture pattern
- Scenarios
 - Water-use, land-use scenarios
- Decision Support Systems (DSS)

Example – Case Study Water Point Mapping (WPM) in Tanzania

- Developed to address Millennium Development Goals (MDGs) (UN 2001)
 - Access to safe drinking water, basic sanitation
- Procedure
 - discrete locations water sources (e.g. wells, springs)
 - Data collection (e.g. GPS location, photography, number of people to supply)
 manually
- Objective:
 - monitoring & identification of water infrastructure, functionality, water quality
 - Improvement of resource allocation

Example – Case Study Water Point Mapping (WPM) in Tanzania

Water points in Mbozi district, Tanzania

(http://www.waterpointmapping.org/ GeoData)

Water Point Mapper

(http://www.waterpointmapper.org)

Manually to interactive real-time

Supporting Data Assessment in Data Scarce-Regions

(Near-) Real-time Point data source

(http://www.statsilk.com/maps/world-stats-open-data, ITU 2010)

Summary & Outlook

- Need to address data-scarcity, particularly for integrated management (nexus approach)
- Combining data from various sources (linked databases, Nexus Observatory)
- WPM: promising tool for monitoring water supply
 - Spatial and temporal coverage
 - Engaging people
 - Contribution to drought risk management

Publication & DNC 2015

November 2014

http://www.dresden-nexus-conference.org
Deadline for Abstracts: 06.10.2104

Thank you

For further Information please contact us:

UNITED NATIONS UNIVERSITY

Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES) Ammonstrasse 74 01067 Dresden Germany

Tel.: +49 351 892193 70 Fax: +49 351 892193 89 E-mail: flores@unu.edu

flores.unu.edu

Making use of Data Data Integration and Visualization

