

MEASURING AND MODELING SOIL INTRA-DAY VARIABILITY OF THE ¹³CO₂ & ¹²CO₂ PRODUCTION AND TRANSPORT IN A SCOTS PINE FOREST

Goffin Stéphanie, Parent F., Plain C., Epron D., Wylock C., Haut B., Maier M., Schack-Kirchner H., Aubinet M., Longdoz Bernard

Soil CO₂ efflux (Fs)

Pools: Pa

Fluxes: Pg/year

Fs: One of the largest component of C cycle

 \approx 10 times greater than fossil fuel emissions

Soil: large C pool

- ⇒ Fs changes may rival the loading of atmosphere by fossil fuel
- \Rightarrow Uncertainties >>>
 - ? Climate Change Impact?
- Positive feedback to the GHG effect?

Past today

Empirical description Mech

Mechanistic understanding

Future

- Discrimination during CO₂ assimilation
- Discrimination changes with climatic conditions
- \Rightarrow During drought, discrimination decrease \Rightarrow photoassimilats more enriched in $^{13}CO_2$ (ex: -25%)
- \Rightarrow Temporal variation of $\delta^{13}CO_2$ may give informations about transfert time of photoassimilates

 δ^{13} CO₂ may differs between CO₂ sources

 \Rightarrow δ^{13} CO₂ may helps for partitionning Fs between sources

 \Rightarrow Understanding of $\delta^{13}CO_2$ fluctuations (space & time) needed

Improving mechanistic understanding of F_s

- 1) Determine the CO_2 production rate Ps and its isotopic signature $\delta^{13}Ps$ for the different soil horizons.
- 2) Find factors affecting $Ps \& \delta^{13}Ps$ intra & inter day fluctuations
- 3) Evaluate by modeling which processes (production or transport) drive *Fs* temporal variability

• ¹²CO₂ & ¹³CO₂ balances for each i layer

$$\frac{\Delta(\varepsilon_{i} * C_{i})}{\Delta t} = \frac{F_{down} - F_{up}}{thick_{i}} + Ps_{i}$$
 for ¹²CO₂ & ¹³CO₂

• Diffusive Flux-Gradient approach

$$F_x = D_{x_i} * \frac{C_x - C_i}{z_x - z_i} = \left(D * \frac{\Delta C}{\Delta z}\right)_{x_i} \text{ for } {}^{12}\text{CO}_2$$

$$Ps_{i} = \varepsilon_{i} * \frac{\Delta C_{i}}{\Delta t} + \frac{\left(D * \frac{\Delta C}{\Delta z}\right)_{down_{i}} - \left(D * \frac{\Delta C}{\Delta z}\right)_{up_{i}}}{thick_{i}}$$

Vertical profile of their dependence on SWC measured on samples at UNIVERSITÄT FREIBURG

¹²CO₂ & ¹³CO₂ vertical profile measured by

(Parent et al. 2013)

(Parent et al. 2013)

Field Measurements

Half-hourly In situ measurements during

21 days

TDLS:

¹²[CO₂] &

¹³[CO₂]

1) membrane

tube **≡**

[CO₂] &

 $\delta^{13}CO_2$ in

soil layers

2) from

chamber

≡ *EF*s &

 δ^{13} EFs

Site Description

Hartheim experimental site

Slow growing 46 year old Scots Pine Forest (Pinus sylvestris L.)

Mean annual air Temp:10.3°C

Mean annual precip: 642 mm

Haplic Regosol (calcaric, humic) (FAO, 2006)

Humus type is mull (1-3 cm thick)

Eddy
Covariance
tower
Meteorological
station

Vertical Profile of Ps

Horizon	% CO ₂ Prod
Ol	11.5
Ah	64.7
AhC	15.8
С	8

2. Factors affecting Ps and δ^{13} Ps

(**Goffin et al. 2014**)

Intra-day Ps variability

Mean diel variation

- > Mean diel varation explained by LOCAL To in Ah & AhC
- > No significant diel variation in C
- In the litter relationship with u* because of advection not taken into account $d(\varepsilon * C) = d + dC$

$$Ps + Adv = \frac{d(\varepsilon * C)}{dt} + \frac{d}{dz}(D\frac{dC}{dz})$$

2. Factors affecting Ps and δ^{13} Ps

(Goffin et al. 2014)

Inter-day δ^{13} Ps variability

• Significant day to day variations of δ^{13} Ps (> 2.5‰) in Ah

• Best explained by soil moisture

Soil drought impact = enrichment
Same impact as for photosynthesis
discrimination !!!

- Not observed with chamber efflux measurements
- Mixing of ≠ layers contributions
- o Perturbation of local soil climate by chamber ?

3. Who (transport or production) is responsible for Ps and δ^{13} Ps temporal variability?

(Goffin et al. undre review)

- 3 model versions simulating CO₂ production and transport
- Comparison of their outputs with [CO₂] and Fs measurements
 - Reference model (RM):
 each layer produce CO₂ following Q10 relationship with the local
 t° & diffusion is the only transport process
 - Transport Version (TV):Advection and dispersion are ss
 - O Production Version :

Production is also driven by Photosynthesis Pressure Concentration Wave (PPCW) by adding a dependence on VPD

3. Who (transport or production) is responsible for Ps and δ^{13} Ps temporal variability?

(Goffin et al. undre review)

o RM: Relatively good reproduction of inter-day variability but intraday variability too low and not in phase

- No significant improvement with TV
- PPCW : Not perfect but diurnal fluctuations are better reproduced and difference in phase is reduced
- → Working on production description instead on transport one is a better option to improve soil CO₂ model

Key points

- Set up of an experimental in-situ device to obtain vertical profile of Ps and δ Ps
- Identify a dependence of one layer to local temperature
- Indentify enrichment of Ps with soil drought in Ah horizon

• Soil CO₂ model should develop production description more than transport one to simulate hourly/daily variability

Thank you for your attention

Meet me on poster #21

Materials & Method

4. Laboratory Measurements

➤ Undisturbed soil cores of 200 cm³ collected in each horizon

- Soil horizon specific physical parameters :
 - Porosity, pF curves
 - Relationships between Ds(SWC)

Material & Method

4. Laboratory measurements – Ds determination

Materials & Method

Background & Objectives

Materials & Method

Results & Discussion

Conclusions

4. Laboratory Measurements – Parametization

Day to day variation Vertical Profile of CO₂ sources

Ah Production terms

Litter Production terms

- Soil production shows clear diel and daily fluctuations in **Ah**
- The diel and daily fluctuations are best explained by the T measured in the topsoil
- \rightarrow temperature is the most important driver of soil CO_2 production

• Unlike other horizons, Ol production was best explained by surface soil water content (SWC) (R²=0.46)