Real-time measurement of site specific N₂O isotopic composition above intensively managed grassland reveals controls on N₂O source processes Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU) ^{1,2}Wolf B., ³Decock C., ³Merbold L., ¹Tuzson B., ¹Emmenegger L., ¹Mohn J. ¹ Karlsruhe Institute of Technology (KIT), Germany ² Empa, Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratory for Materials Science and Technology, Switzerland ³Institute of Agricultural Sciences, ETH Zürich, Switzerland benjamin.wolf@kit.edu #### **Motivation** - N₂O is a potent GHG mainly produced by nitrification, nitrifier denitrification or denitrification - ≥60% of anthropogenic emissions attributed to food production (Syakila & Kroeze 2011) → atmospheric mole fraction increases - development of mitigation strategies pertinent BUT: which source process needs to be controlled to tailor target-oriented strategies? - relative contribution of N₂O source processes to bulk emission uncertain ## N₂O isotopomers $SP = \delta^{15}N\alpha - \delta^{15}N\beta$ benjamin.wolf@kit.edu - N₂O isotopomers carry process infromation: processes with - preference for α -position (N₂O_N; SP~33 %*) - nitrification, abiotic N₂O production, fungal denitrification - low preference (N₂O_D; SP ~-2 ‰*) - (nitrifier) denitrification - \rightarrow SP can be used to seperate N₂O_N and N₂O_D * SP values for N_2O_N and N_2O_D according to Decock and Six 2013 #### Sampling site & specific aims - site specific measurements predominately lab based - intensively managed grassland site (ETH site Chamau) - eddy covariance & chamber measurements - study - dynamics of N₂O site specific isotopic composition - effects of environmetal drivers and management #### Isotopomer analysis Materials Science & Technology - until recently exclusively IRMS measurements (not field deployable) - quantum cascade laser absorption spectroscopy (QCLAS) allows online analysis of N₂O isotopic composition in the field - ambient air N₂O concentration too low for precise on-line measurement of isotope ratios - N₂O of ~ 8 liters ambient air is adsorbed on a HayeSepD trap - desorption in low synthetic air flow increases concentration to 50ppm ## **System performance** # **EMPA** ## **Surface layer measurements** - ambient air sample (inlet @ 2m height) - compressed air sample - C_{input}: diurnal cycle of atmospheric N₂O (source strength and stability) - depletion of δ -values with increasing concentration #### Keeling-plots for SP, δ^{15} N^{bulk} and δ^{18} O - atmospheric isotopic composition in surface layer reflects combination of source and atmospheric background composition - source composition equals intercept when noon-to-noon atmospheric isotopic composition is plotted versus inverse concentration # Isotopic composition: soilemitted N₂O - SP between 1 and 17‰ - large (short term) variation - management actions & rewetting event decreased SP - correlations of N₂O isotopic composition highest with - temperature - DOC (dissolved organic carbon) benjamin.wolf@kit.edu - r² below 30% - «wet» and «dry» period #### **Event based data aggregation** - classes: Manal Manalll, rewetting, all others (BG) - variability during events like management or rewetting low - isotopic composition very variable when no obvious drivers - isotopic composition significantly different for dry/wet phases - SP lower during wet phase, higher during dry phase - → larger contribution from nitrification? #### **Isotopomer maps** (according to Koba et al. 2009) Process groups N₂O_N and N₂O_D based on: Bedard-Haughn et al. (2003),Pörtl et al. (2007), Baggs (2008), Toyoda et al. (2011), Decock and Six (2013) - high emission rates: denitrification - enrichment of $\delta^{15} N^{\text{bulk}}$ and SP indicates $N_2 O$ reduction # EMPA #### **Conclusions** - simultaneous field measurement of $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$ and $\delta^{18}O$ of N_2O with high reproducibility (0.2, 0.1 and 0.1 %) - during management/rewetting low δ -values and well constrained (denitrification) - significantly lower SP during wet phase, higher SP during dry phases - isotopomer maps: process dynamics not due to transition of $N_2O_D \rightarrow N_2O_N$; rather due to variable extent of N_2O reduction to N_2 - large (short term) variability probably due to uncertainty, or mismatch between flux and concentration footprint Thank you for your attention **EMPA** Thanks to Joachim Béla Martin Matz Christoph **Antoine** Lukas Lutz Charlotte Johan Garage Werkstatt TIT Aerodyne **COST-SBF** #### **Controls: whole dataset** - correlations of N₂O isotopic composition highest with - temperature - DOC (dissolved organic carbon) - r² below 30% - additive models do not increase explanatory power significantly