

Real-time measurement of site specific N₂O isotopic composition above intensively managed grassland reveals controls on N₂O source processes

Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU)

^{1,2}Wolf B., ³Decock C., ³Merbold L., ¹Tuzson B., ¹Emmenegger L., ¹Mohn J.

¹ Karlsruhe Institute of Technology (KIT), Germany

² Empa, Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratory for Materials Science and Technology, Switzerland

³Institute of Agricultural Sciences, ETH Zürich, Switzerland

benjamin.wolf@kit.edu

Motivation

- N₂O is a potent GHG mainly produced by nitrification, nitrifier denitrification or denitrification
- ≥60% of anthropogenic emissions attributed to food production (Syakila & Kroeze 2011) → atmospheric mole fraction increases
- development of mitigation strategies pertinent BUT: which source process needs to be controlled to tailor target-oriented strategies?
- relative contribution of N₂O source processes to bulk emission uncertain

N₂O isotopomers

 $SP = \delta^{15}N\alpha - \delta^{15}N\beta$

benjamin.wolf@kit.edu

- N₂O isotopomers carry process infromation: processes with
 - preference for α -position (N₂O_N; SP~33 %*)
 - nitrification, abiotic N₂O production, fungal denitrification
 - low preference (N₂O_D; SP ~-2 ‰*)
 - (nitrifier) denitrification
- \rightarrow SP can be used to seperate N₂O_N and N₂O_D

* SP values for N_2O_N and N_2O_D according to Decock and Six 2013

Sampling site & specific aims

- site specific measurements predominately lab based
- intensively managed grassland site (ETH site Chamau)
- eddy covariance & chamber measurements

- study
 - dynamics of N₂O site specific isotopic composition
 - effects of environmetal drivers and management

Isotopomer analysis

Materials Science & Technology

- until recently exclusively IRMS measurements (not field deployable)
- quantum cascade laser absorption spectroscopy (QCLAS) allows online analysis of N₂O isotopic composition in the field
- ambient air N₂O concentration too low for precise on-line measurement of isotope ratios
- N₂O of ~ 8 liters ambient air is adsorbed on a HayeSepD trap
- desorption in low synthetic air flow increases concentration to 50ppm

System performance

EMPA

Surface layer measurements

- ambient air sample (inlet @ 2m height)
- compressed air sample
- C_{input}: diurnal cycle of atmospheric N₂O (source strength and stability)
- depletion of δ -values with increasing concentration

Keeling-plots for SP, δ^{15} N^{bulk} and δ^{18} O

- atmospheric isotopic composition in surface layer reflects combination of source and atmospheric background composition
- source composition equals intercept when noon-to-noon atmospheric isotopic composition is plotted versus inverse concentration

Isotopic composition: soilemitted N₂O

- SP between 1 and 17‰
- large (short term) variation
- management actions & rewetting event decreased SP
- correlations of N₂O isotopic composition highest with
 - temperature
 - DOC (dissolved organic carbon)

benjamin.wolf@kit.edu

- r² below 30%
- «wet» and «dry» period

Event based data aggregation

- classes: Manal Manalll, rewetting, all others (BG)
- variability during events like management or rewetting low
- isotopic composition very variable when no obvious drivers

- isotopic composition significantly different for dry/wet phases
 - SP lower during wet phase, higher during dry phase
 - → larger contribution from nitrification?

Isotopomer maps (according to Koba et al. 2009)

Process groups N₂O_N and N₂O_D based on:

Bedard-Haughn et al. (2003),Pörtl et al. (2007), Baggs (2008), Toyoda et al. (2011), Decock and Six (2013)

- high emission rates: denitrification
- enrichment of $\delta^{15} N^{\text{bulk}}$ and SP indicates $N_2 O$ reduction

EMPA

Conclusions

- simultaneous field measurement of $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$ and $\delta^{18}O$ of N_2O with high reproducibility (0.2, 0.1 and 0.1 %)
- during management/rewetting low δ -values and well constrained (denitrification)
- significantly lower SP during wet phase, higher SP during dry phases
- isotopomer maps: process dynamics not due to transition of $N_2O_D \rightarrow N_2O_N$; rather due to variable extent of N_2O reduction to N_2
- large (short term) variability probably due to uncertainty, or mismatch between flux and concentration footprint

Thank you for your attention

EMPA

Thanks to Joachim Béla Martin Matz Christoph **Antoine** Lukas Lutz Charlotte Johan Garage Werkstatt TIT Aerodyne **COST-SBF**

Controls: whole dataset

- correlations of N₂O isotopic composition highest with
 - temperature
 - DOC (dissolved organic carbon)
- r² below 30%
- additive models do not increase explanatory power significantly

