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Earth’s Critical Zone
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“Real progress will required problem focused, multidisciplinary field work in natural observatories
where detailed, long-term observations can be made using a variety of disciplinary tools.” (US
National Academy of Science Report, BROES, 2001)

The approach to observation is motivated by:

* hypothesis testing,

« process understanding across temporal and spatial scales

« mathematical model development,

« Utilising multiple sensor and sampling methods,

« Often high-density instrument arrays,

» Time series/real time measurements of coupled process dynamics,
« Combining large data sets with numerical simulation
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*I\/Iillennium Development Goals
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Within the Critical Zone, soil ecosystem services
are central to meeting United Nations
Millennium Development Goals

* To end poverty and hunger

* To ensure environmental sustainability

— Integrate sustainability into country policy and
programmes

— Significantly reduce the rate of biodiversity loss

— Increase access to basic drinking water and
sanitation



* The Perfect Storm

In March 2010 the UK Government Chief Scientist stated that projected pressures
from growth in population and wealth would by 2050 create a “perfect storm”
of converging challenges:

* Increase in population to over 9.3 billion
 Quadrupling in the global economy

* Doubling in demand for food and for fuel

* More than 50% increase in demand for clean water

e ... all while mitigating and adapting to the impacts of
global climate change.



* Updated Projections

During the past year several of these projections have been updated.

* Human population is expected to reach 9.7 billion by 2050
* GHG levels for N,O and CH, have just exceeded previous records
* CO, levels are increasing faster than in previous years

e Agricultural yields are projected to decrease overall due to
insufficient water

* US Climate Assessment concludes impacts are already occurring

* Projected productive land by 2050 outstrips environmental
capacity by 10-45%

.... The Storm is growing in intensity



The Chain of Impact
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* Critical Zone Services
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Desertification:
Loss of Carbon
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Changing Biodiversity




* Loss of Fertility

* Compaction

e Salinisation

* Sealing

e Contamination




Earth’s Critical Zone: the architecture
Treetop to Bedrock

Soil Ecosystem Services -
the heart of Earth’s Critical
Zone

* Food and fibre
production

* Filtering water

* Transforming nutrients
* Carbon storage

* Biological habitat
 Gene pool

EU Thematic Strategy for
Soil Protection, EC (2006)
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* Lysina CZO, Czech Republic —7;
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Even-Aged Norway Spruce Pls: Martin Novak, Pavel Kram
Plantation at Lysina Czech Geological Survey

 Soil Pit (0.5 m?yatiLysina — Podzol on Granite
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Koiliaris CZO, Crete

SOILTREC PI: Nik NIkOlaIdIS, TUC




* The Golden Aggregate
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Empirical evidence of an “agronomically

favourable” soil structure
* Described by water retention
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CAST Conceptual Model
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* Combined ROTH-C and STRUC-C Models

SonTEr Nikolaidis et al., Technical U. Crete
-
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Modelling Structure in SoilTrEC
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Data collection and analysis of CZO soils
Small Plot Experiments
Laboratory experiments

v
Modelling
Plant, Hydrology, Biodiversity,

Weathering, Nutrient dynamics, Food web
Aggregate Reactive transport dynamics, Life

formation (HYDRUS, CAST) cycle analysis

(PROSUM, CAST,
FOrSAFE)

> 1D-Integrated Critical Zone <€
(ICZ) Model

L

Watershed Hydrology and transport (SWAT-ICZ)

y

Upscaling with GIS
(G EOST¢TISTICS)

Evaluation of soil ecosystem
services, life cycle and
monitory value
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Terraces of MILIA Traditional Village

Compost Amendments the last 10 years

For 10 yrs, every year For 8 yrs and 2 yrs fallow Every 3 years
3

Slides and results: Nikolaidis and co-workers, Technical University of Crete
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Soil Water Stable Aggregate (WSA)
Distribution, %
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Slides and results: Nikolaidis and co-workers, Technical University of Crete
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Soil Organic Carbon Stock Distribution
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= Fresh Fruit Production

20

1l

inorganic compost manure 70% compost
fertilizer 30% manure

02011
W 2012
2013

Fruit Fresh Weight (kg/plant)

Exceptional yields - 16-18 t/ha

Slides and results: Nikolaidis and co-workers, Technical University of Crete



% 1D-ICZ Model - Plant Module Resu

SoOILTRELDC
—e—Temp —8—Light —— Water —<—C0O2 —=—N —e—P ——K Ca All
Leaf m Root m MycorC_gpm2 1.2
1800.0 E .
1600.0 %
1400.0 E 0.8
B
A 1200.0
<] =
@0 1000.0 % 0.5
o £
£ 800.0 S 0.4
= 6000 R 1 L |1 S
100.0 - A / ) —— 2o0.2
\ s
200.0 . — —a o an
SRR AN A A
month m
Total shoot at harvest, g C m? Nitrogen uptake, g N m?
------ 1tol A Shoot e 1to1 A field
10000 - 100
1000 - “
o A -
g I g
© s
2 100 - < 50 ;%
E E
L4 ° () =
Biomass Production |" » - v
1 ‘ 0 i
1 100 0 50 100
Observed Observed

Slides and results: Nikolaidis and co-workers, Technical University of Crete



% 1D-ICZ Model - C/N/P and Soil
Structure Module
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% Scaling up Soil Properties to
Regional Scale

Soil Organic Carbon Distribution of Crete
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* Soil Sustainability — by design
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« Design of land use and soil restoration through computational simulation
« Model of soil processes embedded within Critical Zone process model

« Parameterisation via web-accessible GIS

« Scenario analysis for mitigation of/adaptation to environmental change

« Valuation of full range of critical zone services
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Going Global

SCIENCE VOL 3256 20 NOVEMBER 2009
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Monitoring Earth’s

Daniel deB. Richter Jr. and Megan L. Mobley

eologists tell us that we live in the
GAmhropocene. the period marked

by humanity’s global transforma-
tion of the environment (/). More than half of
Earth’s terrestrial surface is now plowed, pas-
tured, fertilized, irrigated, drained, fumigated,
bulldozed, compacted, eroded, reconstructed,
manured, mined, logged, or converted o new
uses. These activities have long-lasting effects
on life-sustaining processes of the near-sur-
face environment, recently termed Earth’s
“critical zone™ (2). The full range of Anthro-
pocene changes in Earth’s critical zone is not
well quantified, especially belowground (see
the figure) (3-6), where observed changes
justify a major expansion in monitoring to

Critical Zone

are the objects of studies aimed to enhance crop
management, manage rising greenhouse gas
emissions, and improve water quality.

To meet humanity's growing needs forfood,
fiber, and bioenergy, plant and soil productivity
will be vastly expanded in the next few decades,
with substantial effects on the belowground
critical zone. Monitoring of critical zones is
ongoing worldwide, but with uneven organiza-
tion and scientific quality (3, 4, 6, 7). Outstand-
ing exceptions are found in developing nations
of southern and southeast Asia (§), where doz-
ens of long-term rice and wheat experiments
test the sustainability of the intensively man-
aged critical zones on which food supplies for
several billion people depend. The results dem-

1m

Earth’s rapidly changing near-surface
environment needs systematic observation
to better manage future crop production,
climates, and water quality.

substantial fractions of greenhouse emis-
sions from agriculture and forestry can be
mitigated by land-management strategies (9,
10). This landmark study, along with moni-
toring networks such as US. Department of
Agriculture’s GRACEnet (/1), will likely
be instrumental in controlling agricultural
greenhouse-gas emissions.

Finally, improved water quality also
depends on increased understanding of the
physics, chemistry, and biology of the critical
zone. Especially promising is the National Sci-
ence Foundation’s new Critical Zone Obser-
vatory (CZ0) program, which studies natu-
ral and human-affected processes that con-
trol water chemistry, from upper soil layers of




Weathering the Storm

Nature, 474, 151-152, 9 June, 2011
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19 ecologists call How tostop the Steve Jones's book Computer- e, %
for an end to the bias against illegal trade in body ontherestof Darwin’s canon, controlled skeleton .
non-native species. p.153 parts and people p.156 from geology to worms p.158 sculptures p.159

G. MCDOWELL/NATUREPL.COM

When water is scarce, dust storms strip away the scant soil in Mali.

Save our soils

Researchers must collaborate to manage one of the planet’s most precious and
threatened resources — for food production and much more, says Steve Banwart.




* International CZO Networks
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c$100M in new funding committed for CZO research worldwide since 2008

* NSF CZO programme

* ECSoIlTrEC project

* French Network of River Basins

* German AquaDiva Project

* German Helmholtz Centres TERENO network of CZOs

e 2014 workshop in Perth, Australia on CZOs for the Southern Hemisphere
* Interest from China in a programme of Critical Zone research

International Steering Committee
Steve Banwart, Jerome Gaillardet, Marty Goldhaber, Sue Trumbore, Don Sparks

Project and network collaboration on:
* Shared sites and data

* Numerical simulation approaches
 PhD and post-doc training



* A 3-year Plan to establish an international

CZO research programme

Available as download from

WWW.czen.org

Sustaining Earth’s Critical Zone
Basic Science and Interdisciplinary
Solutions for Global Challenges

‘Banwart. S.A_ Chorover. .. Gaillardet. |.. Sparks, D. . Vhite. T.. Anderson. S.. Aufdenkampe A..
‘Bernasconi. 5., Brantiey. S.L. Chadwick, O., Dietrich.VVE.. Duffy. C.. Goldhaber. M.. Lehnert. K.,
‘Nikolaidis, NP and Ragnarsdottir, K.V. (2013).




* CZOs to Focus International Science
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H1 Climate gradient experiments today can shed light
on Critical Zone response to future climate change.

Study CZO processes on a gradient from the Artic to
The Sahel (North-South Design)

H2 CZO processes will be increasingly vulnerable to
greater intensity and frequency of extreme events;
heat waves, deep freezes, droughts and floods.

Real-time monitoring of ecosystem services with
forecasting simulations within selected CZOs



* Global Experimental Design

CZ0O Networks along gradients of climate

o
-29.5 to -25.0/ -20.5 to -13
-24.5 to -15.0 -13.5 to 5
-14.5 to -10.0, 5.5 to 14
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0.5 to 5.0 32.5 to 41
5.5 to 10.0 41.5 to 50
10.5 to 15.0 51.5 to 59
15.5 to 20.0 59.5 to 68
20.5 to 30.0 68.5 to 86
30.5 to 35.0 86.5 to 95
35.5 to 40.0 95.5 to 104
> 20.0 > 104 Annual Average Temperature

Map from World Climate. http://www.climate-charts.com/index.html



* Global Experimental Design
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CZ0O Networks along gradients of land use

Land use systems of the world

{at the equator)

Geographic Projection

Land use systems legend
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Map from: UN Food and Agriculture Organisation, Land Degradation Assessment in Drylands



The Global Laboratory

November 2011 U. Delaware Workshop
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National research platform for GES in China

CERN-A large platform for Critical Zone research

Chinese Ecosystem Research Network (CERN)
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Frontiers in International Critical Zone
Science 2014

May 21-24, 2014, Beijing, China

Workshop Objectives

The global societal challenges

The major knowledge advances, current achievements, and frontiers of science
Specific science advances and contributions to solving global challenges

The international research challenges

The governance and partnerships to enable integration

A schedule of steps to develop an international programme of CZO research
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Five Research Challenges

Defining Mechanistic linkages in flows and transformations of energy,
material and genetic information in catchments and aquifers

Model Hindcasting of CZ Evolution, Interpreting the Present,
Forecasting Future Change and Global Impacts

The Response, Resilience, and Recovery of the CZ to Perturbations of
Environmental Change

Observation and Sensing Technology, e-Infrastructure, and Modelling
to quantify the 3-D architecture of the Critical Zone

Common Observations, Governance and Data Coordination of
International CZO Networks
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Actions to Complete by end of 2014

* International Strategy Group established by funders

* |nitial working group meeting on data standards and sharing

* Framework for a jointly-funded international CZO programme

* Road map for first joint calls in 2015

e Strategic platform for a long-term intergovernmental programme
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research for global sustainability

16U

* Improve the usefulness of forecasts of future environmental conditions
and their consequences for people

* Develop, enhance, and integrate observation systems to manage global
and regional environmental change

CZ0s
A

* Determine how to anticipate, avoid and manage disruptive global change

* Encourage innovation (and mechanisms for evaluation) in technological,
policy, and social responses to achieve global sustainability

* Determine institutional, economic, and behavioural changes to enable
effective steps toward global sustainability



SOILTRELC

END



